Dirichlet Process Parsimonious Mixtures for clustering

نویسندگان

  • Faicel Chamroukhi
  • Marius Bartcus
  • Hervé Glotin
چکیده

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced mixtures for complex high dimensional data: from model-based to Bayesian non-parametric inference

Cluster analysis of complex data is an essential task in statistics and machine learning. One of the most popular approaches in cluster analysis is the one based on mixture models. It includes mixture-model based clustering to partition individuals or possibly variables into groups, block mixture-model based clustering to simultaneously associate individuals and variables to clusters, that is c...

متن کامل

Density Modeling and Clustering Using Dirichlet Diffusion Trees

I introduce a family of prior distributions over multivariate distributions, based on the use of a “Dirichlet diffusion tree” to generate exchangeable data sets. These priors can be viewed as generalizations of Dirichlet processes and of Dirichlet process mixtures, but unlike simple mixtures, they can capture the hierarchical structure present in many distributions, by means of the latent diffu...

متن کامل

Maximum Margin Dirichlet Process Mixtures for Clustering

The Dirichlet process mixtures (DPM) can automatically infer the model complexity from data. Hence it has attracted significant attention recently, and is widely used for model selection and clustering. As a generative model, it generally requires prior base distribution to learn component parameters by maximizing posterior probability. In contrast, discriminative classifiers model the conditio...

متن کامل

Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach

We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based o...

متن کامل

Revisiting k-means: New Algorithms via Bayesian Nonparametrics

Bayesian models offer great flexibility for clustering applications—Bayesian nonparametrics can be used for modeling infinite mixtures, and hierarchical Bayesian models can be utilized for sharing clusters across multiple data sets. For the most part, such flexibility is lacking in classical clustering methods such as k-means. In this paper, we revisit the k-means clustering algorithm from a Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.03347  شماره 

صفحات  -

تاریخ انتشار 2015